Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Figure 2 | Basic and Clinical Andrology

Figure 2

From: The emerging role of insulin-like growth factors in testis development and function

Figure 2

A simplified view of insulin/IGF1 signaling. Insulin/IGF1 signaling is mediated by a complex, highly integrated network that controls several processes. Two major pathways are activated by insulin/IGF1 signaling, the ATK/PI3K pathway and the ERK/MAPK pathway, which are involved in several cellular processes such as metabolism, cell growth, proliferation, and apoptosis. Activation of the INSR/IGF1R by insulin/IGF1 binding leads to autophosphorylation of the β subunits and the receptor tyrosine kinase subsequently phosphorylates IRS proteins on their tyrosine residues. This creates recognition sites for additional effector molecules containing SH2 domains, such the p85 regulatory subunit of PI3K (which activates the AKT/PI3K pathway and is mainly responsible for the metabolic actions of insulin/IGF1) and GRB2 (which activates the ERK/MAPK pathway and primarily regulates cell growth and differentiation). Additionally, the INSR and IGF1R can phosphorylate other substrates, such as SHC and GAB1, which link multiple pathways. Together, these signals stimulate a variety of different downstream biological effects including mitogenesis, gene expression, glucose transport, and glycogen synthesis.

Back to article page