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Abstract: The nuclear lamina (NL) is a filamentous protein meshwork, composed essentially of lamins, situated
between the inner nuclear membrane and the chromatin. The NL is a component of the nuclear envelope,
interacts with a wide range of proteins and is required for normal nuclear structure and physiological development.
During spermiogenesis the spermatid nucleus is elongated, and dramatically reduced in size with protamines
replacing histones to produce a highly compacted chromatin. There is mounting evidence from studies in human
and rodent, that the NL plays an important role in mammalian spermatid differentiation during spermiogenesis. In
this review, we summarize and discuss the data available in the literature regarding the involvement of lamins and
their direct or indirect partners in normal and abnormal human spermiogenesis.
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Résumé: La lamina nucléaire (LN) est un réseau de filaments protéiques, composé essentiellement de lamines, situé
entre la membrane nucléaire interne et la chromatine. La LN est un composant de l’enveloppe nucléaire, interagit
avec une large gamme de protéines et est nécessaire à l’intégrité de la structure nucléaire et au développement
physiologique. Au cours de la spermiogenèse, le noyau de la spermatide s’allonge et sa taille est considérablement
réduite, les protamines remplaçant les histones dans le but de constituer une chromatine fortement compactée. De
nombreux travaux chez l’homme et chez les rongeurs montrent que la LN joue un rôle important dans la
différenciation des spermatides chez les mammifères au cours de la spermiogenèse. Dans cette revue, nous
résumons et discutons les données disponibles dans la littérature concernant l’implication des lamines et de leurs
partenaires directs ou indirects dans la spermiogenèse humaine normale et anormale.
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Background
Spermiogenesis is the final phase of spermatogenesis, a
complex process leading to the formation of haploid
spermatozoa from diploid spermatogonia. Spermiogenesis
is defined as the differentiation of post-meiotic haploid

round spermatids into spermatozoa. During spermiogene-
sis, the spermatid nucleus is subjected to a unique remod-
elling of its chromatin involving an extreme compaction
of the genome that accompanies a large reduction in nu-
clear volume with a streamlining of its form from round
to elongated and finally pyriform in humans. This remod-
elling represents a physiological model of nuclear plasti-
city, orchestrated by dynamic interactions between the
nuclear envelope (NE) and the manchette, a network of
cytoplasmic microtubules surrounding the nucleus [1].
This plasticity, which is not found in any other cell type, is
obviously related to specific properties of the spermatid
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nucleus and nuclear envelope. Among the NE compo-
nents, the nuclear lamina (NL) is a meshwork of inter-
mediate filament proteins situated within the nucleoplasm
between the chromatin and the inner nuclear membrane.
It is a key structure for cellular function and is particularly
involved in organising nuclear structure. Over the past 20
years, evidence has emerged supporting the involvement
of the NL, and some of its protein partners, in the specific
remodelling of the mammalian spermatid nucleus. In this
review, after a brief reminder of the nature of the NL and
its roles in human somatic pathology, we present the sci-
entific evidence for its involvement during spermiogene-
sis, initially in mice and then in humans. Finally, we give
examples of abnormal human sperm phenotypes that
reinforce the importance of the NL and its associated pro-
teins in the control of human physiological spermiogene-
sis. All articles cited are in English, and were selected
using “nuclear lamina, lamin, laminopathies, spermato-
genesis and spermiogenesis” as keywords.

The nuclear lamina
In most cells, the NL is composed of A-type and B-type
lamins. The NL meshwork is located at the nuclear per-
iphery through tight interactions of the lamins with a
wide range of transmembrane proteins and by a direct
association with the membrane of a hydrophobic farne-
syl group present at the C-terminus of the B-type lamins
[2]. In mammals, three major A-type lamins have been
described, A, C and a male meiosis-specific isoform C2.
There are also three major B-type lamins, B1, B2 and a
spermatid-specific isoform B3. Lamins A and C are
expressed in most differentiated cells, and are translated
from alternatively spliced transcripts of the lamin A/C
gene (LMNA) while lamins B1 and B2 are expressed in
nearly all cells and are encoded by distinct genes, the
lamin B1 (LMNB1) and lamin B2 (LMNB2) genes re-
spectively [3, 4]. Until recently, lamin isoforms C2 and
B3 had only been described in rodent spermatogenesis,
where they are expressed through the use of alternative
promoters and lack the N-terminal domains of lamin C
and B2 respectively [5–7].
The filamentous networks formed by lamins are re-

quired for normal nuclear structure and physiological de-
velopment [8]. Moreover in humans, anomalies of the NL
have been identified as the cause of several diseases. Mu-
tations in LMNA encoding A-type lamins are known to
underlie the pathogenesis in at least 12 genetic disorders
[4] including type 2B1 Charcot-Marie-Tooth disease [9],
Hutchinson-Gilford progeria syndrome [10, 11] and man-
dibuloacral dysplasia [12], dilated cardiomyopathy [13].
Duplications of LMNB1 have been identified in adult-
onset autosomal dominant leukodystrophy [14], while
mutations in LMNB2 have been associated with acquired
partial lipodystrophy [15]. The lamins are known to play

varying roles in chromatin organization, nuclear position-
ing, cell survival, and regulation of DNA replication and
transcription in different cell types [8, 16]. These functions
are enabled by interactions with protein networks such as
the Linker of Nucleoskeleton and Cytoskeleton (LINC)
complexes involving Sad1-UNC84 homology (SUN)-do-
main and Nesprin proteins that can connect the NL to the
cytoskeleton and the centrosome, as well as Lamina-
associated polypeptide 2, Emerin, Man (LEM)-domain/
Barrier-to-Autointegration Factor (BAF) or Lamin B re-
ceptor (LBR)/Chromobox (CBX), protein complexes
known to connect the NL to the chromatin [17].

The nuclear lamina is an actor in normal spermiogenesis
The importance of the NE in the remodelling that oc-
curs during spermiogenesis was first suggested by the
abnormal development of the sperm head, acrosome and
flagellum in mutant mouse lines whose spermatids lack
the expression of either Lis1 or Mgcl-1, proteins that, re-
spectively, connect the NL to the cytoskeleton, and the
NL to the chromatin: Lis1 regulates the interaction of
the LINC complex and the dynein motor, while Mgcl-1
is a component of the NE and a binding partner of the
lamina-associated polypeptide 2, isoform beta, LAP2β
[18, 19]. Recently a more direct link between human in-
fertility and the nuclear envelope has been established
through the study of DPY19L2, a gene transcribed pre-
dominantly in spermatids. In human, both copies of the
DPY19L2 gene are deleted in around 70% of men with
globozoospermia, a rare phenotype characterised by
malformed round sperm heads without an acrosome
[20–22]. In the mouse, the knockout of DPY19L2 pro-
duced an identical phenotype, and the DPY19L2 protein
was shown to localise to the region of the inner nuclear
membrane facing the acrosome. Interestingly, the NL is
excluded from this region, inferring an essential inter-
action between the acrosome, DPY19L2 and the NL
[23]. Furthermore, the sperm nucleus from Dpy19l2 KO
mice was shown to be poorly compacted with a failure
to replace the histones with the protamins [24]. These
findings indicate that the NL may be involved in diverse
aspects of spermatid differentiation during spermiogene-
sis, from the remodelling of nuclear morphology and the
chromatin to the formation and positioning of the acro-
some and the flagellum.
The first studies to characterize the NL during sper-

miogenesis focused on rodents. They showed that the
A-type lamins, A and C, are absent from rodent sperma-
tids, and that the NL is composed exclusively of B-type
lamins [25, 26]. Lamin B1 and the B3 spermiogenesis spe-
cific isoforms were localised at the nuclear periphery in
spermatids, but lamin B2 was not detected [27]. During ro-
dent spermiogenesis, the distribution of lamin B1 and B3
changes, with a progressive regression to the posterior pole
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of the elongating spermatid nucleus as the acrosome
spreads, and neither is present in mature spermatozoa
[27, 28]. It has also been shown that the overexpression of
mouse lamin B3 causes severe nuclear deformation in cul-
tured cell lines [5, 29]. Based on this finding it has been
hypothesised that the role of lamin B3 in spermatids is to
increase the flexibility of the NL to enable the intense nu-
clear remodelling that occurs during spermiogenesis [29].

In humans, the first characterization of the NL structure
during human spermiogenesis was reported in 2015 by our
team, describing the expression pattern and localization of
A- and B-type lamins in post-meiotic human male germ
cells [30], (Fig. 1a and b). We identified a transcript encod-
ing a B3 isoform expressed in human spermatids and
showed that the lamins B1 and B2/B3 are the only lamins
present during human spermiogenesis. Definitive proof that

a

b

Fig. 1 a Immunolocalisation of Lamin B1, LEMD1, BAF and BAF-L (green) on human spermatids and testicular spermatozoa. Labelling is shown
on successive steps of spermiogenesis: round spermatid (RS), elongating spermatid (ES), testicular spermatozoa (TS). The acrosome is identified
using lectin PNA (red) and DNA is counterstained with DAPI (blue). Scale bar is 10 μm. b Schematic representation of nuclear lamina proteins and
nuclear partner proteins during human spermiogenesis. Successive steps are represented: round spermatid (RS), elongating spermatid (ES), testicular
spermatozoa (TS). The acrosome is represented in green. LEMD1: LEM domain containing 1; LEMD2-Cter: LEM domain containing 2-Cterminal region;
BAF: Barrier-to-Autointegration Factor; BAF-L: Barrier-to-Autointegration Factor Like; LAP2b: LAP2: lamina-associated polypeptide 2-β isoform
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the lamin B3 protein is produced in human spermatids re-
quires the production of a specific antibody.
We further showed that, as in the mouse, the ectopic

expression of human lamin B3, but not lamin B2, in-
duces a major nuclear shape deformation in HeLa cells.
In human spermatids, B-type lamins are present at the
nuclear periphery, except in the region covered by the
acrosome. As the spermatid matures, the B-type lamin
label recedes towards the flagellum, remaining detectable
on around 40% of mature ejaculated spermatozoa. Our
results in human demonstrate the similarities in the
composition and behaviour of the spermatid NL be-
tween rodents and humans and provide strong evidence
that the shared features are of functional significance
during mammalian spermiogenesis. However, the precise
role of the lamin B3 isoform during spermiogenesis re-
mains to be determined.

Lamin partners are involved in human spermiogenesis
There is now considerable evidence for the existence of
functional links between the NL and the cytoskeleton
through SUN proteins. In contrast it is emerging that
the links characterised in somatic cells between the NL
and the chromatin compartment, via LEM-domain pro-
tein/BAF complexes or LBR/CBX complexes, may be ab-
sent after the earliest stage of spermiogenesis.
The SUN-domain and the KASH-domain protein fam-

ilies form protein complexes that connect the nucleus to
the major cytoskeleton network [31, 32]. In spermatids,
the proteins SUN3, SUN4 and SUN5 have a localisation at
the nuclear periphery coincident with the lamins [33–36].
In mice lacking SUN4, the acrosome remains attached
and the chromatin condenses, but the manchette does not
attach to the nucleus, spermatids do not elongate and ma-
ture spermatozoa have round heads [35, 37].
A number of proteins are known to form links be-

tween the NL and the chromatin in somatic cells: Lamin
B Receptor (LBR), members of the LEM-domain (the
Lamina-associated polypeptide 2, Emerin, MAN1 do-
main) family and Barrier-to-Autointegration Factor
(BAF) [38–40]. LBR and most LEM-domain proteins are
inner nuclear membrane proteins that through their
interaction with the nuclear lamina participate in chro-
matin organization, nuclear pore complex assembly, nu-
clear positioning, nuclear structure, nuclear envelope
breakdown and reassembly during mitosis, DNA replica-
tion, transcriptional regulation and signal transduction.
The Barrier-to-Autointegration factor (BAF) is a con-
served chromatin protein capable of simultaneously
binding both DNA and the LEM-domain of some LEM-
domain proteins [41]. LBR (Lamin B Receptor) interacts
with CBX heterochromatin proteins, DNA and free his-
tones [42, 43]. In the rat, LBR has been localised to the
nuclear periphery of elongating spermatids, and it has

been suggested that LBR could be involved in chromatin
remodelling during spermiogenesis, based on the dem-
onstration that in vitro it interacts with Protamine 1
[44]. Human LEM-domain proteins are a heterogeneous
family of mainly nuclear proteins that share a conserved
amino acid domain, the LEM-domain, that is a binding
site for BAF (barrier-to-autointegration factor). In
addition to the founding proteins, four further human
LEM-domain encoding genes have been described: LEM
domain containing 1 (LEMD1) expressed predominantly
in the testis [45], LEM domain containing 2 (LEMD2)
[46], Ankyrin repeat and LEM domain containing 2
(ANKLE2) [47] and Ankyrin repeat and LEM domain
containing 1 (ANKLE1). BAF has been shown to be able
to interact simultaneously with DNA and the LEM-
domain of Lamina-associated polypeptid 2 (LAP2) and
Emerin genes [48, 49], indicating that BAF-LEM com-
plexes serve to link the chromatin to the nuclear periph-
ery. It has been shown that LAP2 isoforms are present
in rat spermatids with LAP2β predominating during
spermiogenesis, but with only LAP2α being retained in
mature spermatozoa [28]. ANKLE1 is an endonuclease,
ANKLE2 (also known as LEM4) is the only LEM-domain
protein that does not localise to the interphase nucleus,
and it is found at the cytoplasmic face of the endoplasmic
reticulum, where it controls post-mitotic formation of the
nuclear envelope by regulating BAF phosphorylation [50].
BAF is expressed widely, but has a paralogue, barrier-to-
autointegration factor-like (BAF-L) that is expressed pre-
dominately in testis and pancreas [51, 52].
During human spermiogenesis, we characterised the

known lamina-chromatin interface proteins and
showed that transcripts for Emerin, LEMD1, LEMD2,
ANKLE2, LAP2α, LAP2β, BAF-L and LEMD2 (only
the 3′ end of the coding region) were detected in hu-
man spermatozoa. However, transcripts for LBR,
LEMD3 and ANKLE1 were not detected, and consist-
ent with their absence during human spermiogenesis
we tested for, but did not detect LBR or LEMD3 pro-
teins in spermatids by immunofluorescence [53]. At
the protein level in spermatids, no protein localised
to the nuclear periphery, LEMD1, LEMD2-Cter,
LAP2β, BAF and BAF-L were detected in the nucleo-
plasm, receding towards the posterior pole as sperma-
tids mature (Fig. 1a and b), whereas ANKLE2 was
detected in the cytoplasm, localising to the endoplas-
mic reticulum in round spermatids. These data estab-
lish that the lamina-chromatin interface in human
spermatids is radically distinct from that defined in
somatic cells. Recently, the lamina associated polypep-
tide 1 (LAP1) was reported to be located at the cen-
triolar pole of elongated spermatids [54]. In ejaculated
spermatozoa, only BAF and BAF-L can be detected,
suggesting that they might contribute to the shaping
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of the spermatozoon nucleus, and perhaps, after
fertilization, to male pronucleus formation.

The NL in abnormal human spermiogenesis
As previously described, homozygous deletions of
DPY19L2, a gene encoding an inner nuclear membrane
protein, are frequently found in cases of globozoosper-
mia, explaining 25–70% of cases [22]. In the mouse,
knockout of Dpy19l2 alters the organisation of the NL,
as evidenced by the persistence of lamin B1 throughout
the nuclear periphery in round spermatids, the failure of
spermatozoa nuclear shaping and the detachment of the
acrosomal vesicle, a phenotype identical to that found in
men deleted for DPY19L2 [23, 55, 56]. Even though
nothing is known about how DPY19L2 and the NL
interact, it has been proposed that DPY19L2 may func-
tion as a LINC-like protein during mammalian spermio-
genesis [57]. It has been reported that the NL also
appears immature in human globozoospermic spermato-
zoa, with a lamin B1 signal predominantly observed at
the whole nuclear periphery, not polarized as in control
spermatozoa [58]. Thus DPY19L2 may play a role in dis-
placing the lamina from the nuclear periphery under the
acrosome in spermatids. Moreover, BAF and BAF-L are
not detected in globozoospermic spermatozoa. So, the
lack of maturation of the NL, and the modifications in
the expression or location of chromatin-partners might
underlie the sperm chromatin defects and the chromatin
heterogeneity observed in globozoospermia.
Decapitated spermatozoa represent another rare form

of teratozoopermia [59, 60]. In a recent study, 8 of 17
men with this phenotype were found to carry a rare po-
tentially damaging variant on each allele of the SUN5
gene, providing strong evidence that the loss of SUN5
function causes acephalic spermatozoa syndrome [61].
We strengthened this conclusion with the report of a
homozygous deletion of SUN5 in three related men, the
second case of a biallelic high confidence loss-of-
function mutation, confirming that a loss of SUN5 func-
tion is the cause of acephalic spermatozoa [62]. These
data show that SUN5 is required for the formation of
the sperm head-tail junction and male fertility. Interest-
ingly SUN5 co-localises with the NL throughout sperm-
atid differentiation and, in the mature spermatozoa, is
detected at the posterior pole of the sperm head where
the flagellum is joined to the nucleus.

Conclusion
A considerable amount of data from human and rodents
highlights the importance of the NL during mammalian
spermiogenesis. As in somatic cells, the NL must be
considered as an essential determinant in the manage-
ment of germ cell differentiation during spermiogenesis,
and thus as critical for the production of spermatozoa

competent to fertilize and induce development of a vi-
able embryo and a healthy individual. Components of
the NL or some of its direct and indirect partners may
represent new positive biomarkers of human spermato-
zoa quality. Further experiments are now needed to clar-
ify the degree to which these markers contribute to
human spermatozoa quality.
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