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Genes located in Y-chromosomal regions
important for male fertility show altered
transcript levels in cryptorchidism and
respond to curative hormone treatment
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Abstract

Background: Undescended (cryptorchid) testes in patients with defective mini-puberty and low testosterone levels
contain gonocytes that fail to differentiate normally, which impairs the development of Ad spermatogonia and
ultimately leads to adult infertility. Treatment with the gonadotropin-releasing hormone agonist GnRHa increases
luteinizing hormone and testosterone and rescues fertility in the majority of pathological cryptorchid testes. Several
Y-chromosomal genes in the male-specific Y region (MSY) are essential for spermatogenesis, testis development
and function, and are associated with azoospermia, infertility and cryptorchidism. In this study, we analyzed the
expression of MSY genes in testes with Ad spermatogonia (low infertility risk patients) as compared to testes
lacking Ad spermatogonia (high infertility risk) before and after curative GnRHa treatment, and in correlation to their
location on the Y-chromosome.

Results: Twenty genes that are up- or down-regulated in the Ad- group are in the X-degenerate or the ampliconic
region, respectively. GnRHa treatment increases mRNA levels of 14 genes in the ampliconic region and decreases
mRNA levels of 10 genes in the X-degenerate region.

Conclusion: Our findings implicate Y-chromosomal genes, including USP9Y, UTY, TXLNGY, RBMY1B, RBMY1E, RBMY1J
and TSPY4, some of which are known to be important for spermatogenesis, in the curative hormonal treatment of
cryptorchidism-induced infertility.
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Résumé

Contexte: La non descente des testicules chez les garçons cryptorchides qui présentent une mini-puberté
défectueuse et un taux réduit de testostérone (T) ont des gonocytes incapables de se différencier normalement en
spermatogonie Ad. Cette dernière entraîne une infertilité. Le traitement avec l’agoniste du GnRH (GnRHa) augmente
les taux de LH et T et permet de sauvegarder la fertilité chez la majorité des testicules cryptorchides pathologiques.
Plusieurs gènes du chromosome Y localisés dans la région spécifique du mâle (MSY) sont essentiels pour la
spermatogénèse, ainsi que pour le développement et la fonction testiculaires, et sont associés à l’azoospermie,
l’infertilité et la cryptorchidie. Dans cette étude, nous avons analysé l’expression des gènes dans la région MSY des
testicules avec et sans spermatogonies Ad, avant et après traitement par GnRHa. Les résultats sont corrélés avec la
localisation des gènes dans le chromosome Y.

Résultats: Dans le groupe Ad-, vingte gènes dont l’expression est. régulée à la hausse ou à la baisse sont
respectivement localisés dans la région dégénérée du X ou dans la région ampliconique. Le traitement par GnRHa
augmente les taux de mRNA de 14 gènes dans la région ampliconique et réduit l’expression de 10 gènes dans la
région dégénérée du X.

Conclusion: Nos résultats impliquent une participation des gènes du chromosome Y, compris USP9Y, UTY, TXLNGY,
RBMY1B, RBMY1E, RBMY1J et TSPY4, dont certains sont importants pour la fertilité, dans le traitement curatif de
l’infertilité due à la cryptorchidie.

Mots-clés: Chromosome Y, Région AZF, Spermatogonie Ad, Séquençage des ARN, Testostérone, LH, Traitement par
GnRHa, Infertilité, Cryptorchidie, Mini-puberté

Introduction
Cryptorchidism is the most frequent congenital pediatric
urological disorder in boys and represents the most
common cause of non-obstructive azoospermia in man
[1–3]. During mini-puberty, which peaks between 30 to
60 days and lasts up to 180 days of postnatal life in male
infants, activation of the hypothalamic-pituitary-gonadal
(HPG) axis leads to a transient increase of gonadotro-
pins and testosterone [4–6], which induce the transition
of gonocytes into Ad (dark) spermatogonia that are stem
cells for sperm development [7, 8]. In cryptorchid testes
with defective mini-puberty, insufficient testosterone
levels fail to direct gonocytes into the differentiation
process, which impairs the development of Ad sperm-
atogonia and ultimately causes adult infertility [9–11].
Treatment with the gonadotropin-releasing hormone
agonist (GnRHa) Buserelin increases luteinizing hor-
mone (LH) and testosterone levels and rescues fertility
in the majority of cryptorchid boys [12]. We reported
earlier that GnRHa induces expression of genes important
for the HPG axis [8, 13] and the gonocyte-Ad spermato-
gonia transition [14], and has a repressive effect on Sertoli
cell marker genes [15].Someof these reported GnRHa reg-
ulated genes, are localized on the Y chromosome.
The Y chromosome harbors a number of genes essen-

tial for spermatogenesis, testis development and func-
tion, which are located in the male-specific Y region
(MSY), known as non-recombining region of the Y
chromosome ([16] and reviewed in [17]). The euchro-
matic sequences of the MSY have been divided into

three classes on the basis of their evolutionary origin
[18]: X-transposed, X-degenerate and ampliconic (Fig. 1).
Interestingly, ubiquitously expressed genes were found
to reside in X-degenerate regions, while exclusively tes-
tes specific protein coding genes were found in the
ampliconic regions [18]. Especially deletions on the long
arm of the Y chromosome (Yq) were associated with de-
fects in spermatogenesis and are designated as azoosper-
mia factor (AZF) regions [16, 19]. Based on particular
spermatogenesis disruption phenotypes, three AZF re-
gions were defined: (1) AZFa deletions were associated
with complete absence of germ cells in tubules. (2)
AZFb deletions were associated with a maturation arrest
at the spermatocyte stage. (3) AZFc deletions were asso-
ciated with hypospermatogenesis [16], reviewed in [20].
The AZFa region contains three protein coding genes
DDX3Y, USP9Y, UTY and the long non-coding RNA
(lncRNA) TTTY15, and deletions are frequently ob-
served in Sertoli cell-only (SCO) syndrome [21–23].
UTY belongs to the group of H3K27me2/3 histone
demethylases, which are involved in male germ cell
maintenance and development [24–26]. AZFb and AZFc
deletions partially overlap. Male specific RBMY proteins
are predominantly expressed in post-meiotic germ cells
and bind RNA [27–29]. Both RBMY and the
lysine-specific histone (H3K4) demethylase KDM5D are
considered candidates for causing AZFb-related testicu-
lar pathology; reviewed in [20]. The AZFc region is
almost exclusively constituted by amplicons and con-
tains three gene families (BPY2, CDY and DAZ) and the
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lncRNAs TTTY3 and TTTY4. CDY proteins are histone
acetyltransferases with a strong preference for H4 and
are considered as nuclear remodeling factors promoting
histone H4 hyperacetylation in late spermatids [30].
Deletion of DAZ genes are common causes of infertility
in humans. DAZ family members are RNA binding pro-
teins important in the establishment and maintenance of
the male germ line; reviewed in [31–33]. Genetic map-
ping of the short arm of the Y chromosome (Yp)
resulted in the localization of the sex-determining gene
SRY [34, 35] and the gonadoblastoma (GBY) locus with
TSPY as the putative gene locus [36, 37].
In this study, we investigated the expression of

male-specific Y chromosomal genes in undescended
testis prone to infertility by comparing RNA profiles
from testes with impaired mini-puberty lacking Ad
spermatogonia (High Infertility Risk, Ad-) to those
from testes that completed mini-puberty (Low Infertil-
ity Risk, Ad+). Furthermore, we analyzed the effect of
GnRHa on MSY gene expression in Ad- patients. Our
results implicate Y-chromosome genes important for
spermatogenesis in the curative hormonal treatment of
cryptorchidism-induced infertility.

Materials and methods
Study population and biopsy sample collection
Testis localized outside of the scrotum and incapable of
being brought into a stable scrotal position is defined as
a cryptorchid testis. In our earlier studies all patients
with isolated cryptorchidism had undescended testes lo-
cated in the inguinal region [8, 13]. Patients were age
and ethnicity matched. The age of the patients ranged
from 8 to 59months, resulting in a median age of 18.5
months. Testicular biopsies were taken at the time of
orchidopexy. Collected biopsy samples were divided into
two pieces, with one fragment immediately immersed in
RNAlater (ThermoFisher Scientific, Waltham, Massachu-
setts, USA) and stored at − 25 °C until further processing

(for RNA extraction and RNA- sequencing), and the other
fixed in glutaraldehyde for histological processing.
To evaluate Y-chromosomal gene expression profiles

we used RNA sequencing data from our two previous
studies: The first study included 15 biopsies of 15 pa-
tients (7 unilateral and 8 bilateral undescended testes)
which were selected prior randomization and based on
histological results (Fig. 1). Seven patients were grouped
into the High Infertility Risk group lacking Ad sperm-
atogonia (HIR/Ad-), and 8 patients were grouped into
the Low Infertility Risk group presenting Ad spermato-
gonia (LIR/Ad+) [8]. From a randomized study [38], in
which Ad- bilateral cryptorchid boys were treated with
GnRHa (Buserelin) after the first orchidopexy (surgery),
data was retrieved from 4 patients. Initial biopsies of
these four patients revealed no Ad spermatogonia, indi-
cating defective mini-puberty (Ad- group). The second
testis was managed by orchidopexy and biopsied 6
months after the initial surgery and GnRHa treatment
[13]. Since data of first biopsies of two out of these four
patients was retrieved from the HIR(Ad-)/LIR(Ad+)
comparison study (15 biopsies), in total results from 21
biopsies were compared.

Histological analyses
Biopsies were fixed in phosphate-buffered saline (PBS,
pH 7.4) containing 3% glutaraldehyde and embedded in
Epon resin. Semi-thin sections of 1 μm were cut using a
Reichert Om-U3 ultramicrotome (Reichert AG, Vienna,
Austria). Sections were mounted on glass slides, stained
with 1% toluidine blue, and examined under a Zeiss
Axioskop light microscope (Carl Zeiss Microscopy GmbH,
Jena, Germany) with an integrated photo-camera.
During histological analyses, at least 100 tubular cross

sections per biopsy were evaluated, regarding their num-
ber of Ad spermatogonia. Ad spermatogonia were iden-
tified in prepubertal testes according to the criteria first
published by Seguchi and Hadziselimovic [39]. Ad

Fig. 1 Flow chart showing study design, and the selection of study patients and samples for RNA expression profiling

Gegenschatz-Schmid et al. Basic and Clinical Andrology            (2019) 29:8 Page 3 of 8



spermatogonia are germ cells, which in contrast to Ap
or fetal spermatogonia, are characterized by cytoplasm
with a darker aspect and a typical halo in the nucleus,
termed the rarefaction zone.

RNA preparation, sequencing, data analyses, and RNA
expression levels
The workflow from RNA isolation, through to purifi-
cation, library preparation, sequencing, data analyses,
and expression level analysis, was described earlier in
detail [8, 13].

Data and differential gene expression analyses
Determination of differentially expressed genes, statis-
tical analyses and model design were described previ-
ously [8, 13]. Only genes with at least one read per
million, in at least two samples, were included. P values
and fold-changes were calculated for the treatment fac-
tor and differentially expressed genes were defined as
those displaying a false discovery rate (FDR) of less than
0.05. Raw data files are deposited at the Database of
Genotypes and Phenotypes (dbGaP) with the accession
number phs001275.v1.p1.

Results
We recently reported the differential gene expression
profiles of Ad- versus Ad+ and GnRHa treated versus
untreated Ad- patients [8, 13], of which 10 genes are of
Y chromosomal origin (Fig. 2). This let us in this study,
to focus on 577 genes mapped on the Y chromosome
(RefSeq genome records for Homo sapiens, annotation
release 108). We found 10 additional genes (20 in total)
that are significantly differentially expressed between
Ad- and Ad+ samples (Tables 1 and 2). Furthermore, we
identified 21 additional (25 in total) differentially
expressed genes when we compared GnRHa treated and
untreated Ad- patient samples, all of which showed

significant differences (Tables 1 and 2). For clarity, this
analysis focusses on protein-coding and non-coding
genes in the MSY region, excluding the Y-chromosomal
pseudoautosomal and recombining regions.

Genes that are up- or down-regulated in the ad- group
are in the X-degenerate or the ampliconic region,
respectively
USP9Y, UTY, TXLNGY and TTTY10 are in the
X-degenerate region and show slightly increased mRNA
levels in the Ad- group as compared to the Ad+ group
(Tables 1 and 2).
As opposed to that, 16 genes showed decreased mRNAs

levels in the Ad- group compared to the Ad+ group. Ex-
cept for TGIF2LY, which is found in the X-transposed re-
gion, the downregulated genes are located in the
ampliconic region (Tables 1 and 2, Fig. 1). These loci in-
clude the deleted in azoospermia family genes DAZ1,
DAZ2, DAZ3, DAZ4, the Y-linked testis specific protein
coding family genes TSPY1,TSPY2,TSPY3,TSPY4,TSPY8,
the RNA binding motif protein Y-linked family 1 members
RBMY1B, RBMY1E, RBMY1F, RBMY2FP, RBMY1J, and fi-
nally the Y-linked variable charge gene VCY.

GnRHa treatment increases mRNA levels of genes in the
ampliconic region and decreases mRNA levels of genes in
the X-degenerate region
Eleven genes within theMSYshowed decreased mRNA levels in tes-
tes from Ad- patients after GnRHa treatment (Tables 1 and 2, Fig. 1).
Except for TTTY15, which is in the ampliconic region, they are lo-
cated in the X-degenerate region (Tables 1 and 2, Fig. 1): DDX3Y,
EIF1AY, KDM5D, NLGN4Y, RPS4Y1, TMSB4Y, TXLNGY, USP9Y,
UTY, andZFY.
Fourteen genes are upregulated in samples from Ad-

patients after GnRHa treatment and are in the amplico-
nic region (Tables 1 and 2, Fig. 1): BCORP1, BPY2,
CDY1, CDY2A, FAM197Y2, FAM197Y5, HSFY2, RBMY

Fig. 2 Illustration of Y-chromosomal differential gene expression in Ad- versus Ad+ testis and Ad- testis before and after GnRHa treatment.
Features of the Y-chromosome are represented as colored blocks and include the pseudo-autosomal region (blue), heterochromatic (dotted
blue), X-degenerate (green), ampliconic (yellow) and X-transposed (red) regions. The upper half of the Y-chromosome shows differentially
expressed genes observed in Ad- testes and the lower half differentially expressed genes in GnRHa testes. Genes for which we measured
increased or decreased mRNA levels are given in blue or red, respectively. Azoospermia factor regions (AZFa-c) and gonadoblastoma locus on Y
chromosome (GBY) are indicated
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family members 1B, −1E, and -1 J, TSPY4, TTTY2,
TTTY4, and XKRY.

USP9Y, UTY and TXLNGY show elevated mRNA levels in
ad- samples and negatively respond to GnRHa treatment
Three genes show reduced RNA expression levels in
Ad- patient samples and increased RNA levels after
GnRHa treatment (Table 2): USP9Y, UTY, and
TXLNGY. The genes are located within the AZF dele-
tion regions (Fig. 1).

RBMY1B, RBMY1E, RBMY1J and TSPY4 show reduced
mRNA levels in ad- samples and positively respond to
GnRHa treatment
Four genes show reduced RNA expression levels in Ad-
patient samples and increased RNA levels after GnRHa

treatment (Table 2): RBMY1B, RBMY1E, RBMY1J, and
TSPY4. The genes are located within the ampliconic de-
letion regions (Fig. 1).

Discussion
During mini-puberty GnRH induces differentiation of
Ad spermatogonia from gonocytes. Treatment with
GnRHa in cryptorchid boys of the HIR group (Ad-) was
effective in rescuing defective mini-puberty and com-
pleting the transition from gonocytes to Ad spermato-
gonia [38]. The differential gene expression results of Y
chromosome genes suggest transcriptional changes dur-
ing mini-puberty, supporting the differentiation process
of Ad spermatogonia from gonocytes and suggesting
GnRHa dependent responsiveness especially for USP9Y,

Table 1 List of male specific Y-chromosomal (MSY) genes analyzed in this study. Gene annotation (Symbol), full genename, and
gene location in the MSY region (X-degenerate, X-transposed, or ampliconic, highlighted in green, red and yellow, respectively) are
represented
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UTY, TXLNGY, RBMY1B, RBMY1E, RBMY1J and
TSPY4.
The Y chromosome harbors a number of genes im-

portant for male fertility. We find that positive and nega-
tive effects of cryptorchidism and curative hormonal
treatment of gonocyte differentiation appear to be con-
centrated in defined chromosomal regions (Fig. 1).
What might be the mechanism for such broad and

region-specific effects on gene expression? The epigen-
etic pattern on the human Y chromosome was found to
be evolutionary conserved [37]. It was shown that the
DNA methylation pattern was relatively stable compared
to the tested X chromosome and chromosome 12 [37].
Furthermore, Singh and coworkers observed that the
global conservation of the epigenetic pattern was associ-
ated with sequences of the same origin (X-transposed,
X-degenerate, ampliconic), implying similar regulatory
mechanisms across genes that share common origin and
epigenetic profile [40].
Epigenetically regulated gene expression during sperm-

atogenesis is critical for development of fertility. During
the different steps of spermatogenesis, several epigenetic
modifications involving DNA methylations and histone
modifications occur; reviewed in [41]. While primordial

germ cells undergo a process of demethylation and deace-
tylation, a progressive DNA methylation occurs in sperm-
atogonia with establishment of paternal methylation.
Several studies reported epigenetic changes as cause for
infertility in men, including altered methylation of various
imprinted and developmental loci [42–45], and abnormal
histone marks [46, 47]. Although, to our best knowledge,
no specific DNA methylation changes on the Y chromo-
some have been linked to infertility, they have been con-
nected to prostate cancer [48]. GnRHa treatment had a
gene repressing effect on UTY and KDM5D, both of
which are demethylases of the repressing mark Histone
H3 Lysine 27 (H3K27me3) [49] and the activating mark
Histone H3 Lysine 4 (H3K4me3) [50, 51], respectively.
UTY is thought to have lost its histone demethylase activ-
ity but the gene was shown to be important for mouse
embryogenesis independently of demethylase enzyme
activity [52]. It is therefore possible that this new function
also operates in human gonocytes, and GnRHa treatment
influences histone modifications.
Little is known about the functions of TSPY4 and

TXLNGY in human and there are no known mouse
homologs. USP9Y was initially implicated in male fertil-
ity but later it was found that the gene was deleted in

Table 2 Differential expression of male specific Y-chromosomal (MSY) genes in Ad- versus Ad+ and in the GnRHa treated versus
untreated Ad- groups (GnRHa/untreated). Genes are ordered according to their location on the Y chromosome. Increased or decreased
gene expression is displayed in red or blue values, respectively. The table contains information on the location of the gene in the MSY
region colored as described in Table 1, the log-transformed fold change (log FCAd−/Ad+), false discovery rate (FDRAd−/Ad+), median
expression values in reads per kilobase per million (RPKM) (MedianAd-; MedianAd+), and the median absolute deviation (MADAd-; MADAd+)
for Ad- and Ad+ samples. A similar nomenclature is applied for comparison of Ad- samples before and after treatment (GnRHa/
untreated). Values showing differences that are not significant (n.s.) or not determined (n.d.) are indicated. Earlier reported genes are
listed with the corresponding reference
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patients with normal spermatogenesis, which argues
against a critical function in the process [53]. Foresta
and coworkers suggested that DBY/DDX3Y might be an
AZFa candidate because it is frequently deleted in male
infertility, and its mutation significantly reduces or even
abolishes the germ cell population [54]. GnRH treatment
greatly downregulated DBY/DDX3Y expression, indicat-
ing that full level expression of this gene is not essential
for gonocyte differentiation into Ad spermatogonia.
RBMY is critical for male fertility in a mouse model and
therefore constitutes a major candidate for molecular
functions that may help explain the curative effect of
GnRHa treatment [55]. While the limitation of this ex-
ploratory Y-chromosomal RNA profiling study is the small
number of samples, we would like to point out that the in-
cluded patients were enrolled sequentially and received
treatment based on a randomized allocation (Fig. 2) [38].

Conclusion
Our findings link Y-chromosomal genes known to be
important and relevant for spermatogenesis in the cura-
tive hormonal treatment of cryptorchidism-induced in-
fertility. Of note, our observation support data of global
conservations of the epigenetic pattern associated with
the sequences of the same origin (X-transposed,
X-degenerate and ampliconic). This observations impli-
cate Y-chromosomal genes, including USP9Y, UTY,
TXLNGY, RBMY1B, RBMY1E, RBMY1J and TSPY4,
some of which are known to be important for spermato-
genesis, in the curative hormonal treatment of
cryptorchidism-induced infertility.
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